Towards a Unified Verification Theory
for Various Memory Consistency Models

Tatsuya Abe

Toshiyuki Maeda

RIKEN AICS, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
{abet, tosh}@riken. jp

1 Introduction

Memory consistency models (e.g., Total Store Ordering
(TSO), Partial Store Ordering (PSO), and Relaxed Mem-
ory Ordering [7]) specify behaviors of shared memo-
ries that are simultaneously accessed by multiple threads.
For example, consider the program (x = 1; y = 1) |
(r® = y; rl1 = x) that consists of two threads where || de-
notes a parallel composition, r® and r1 are thread-local vari-
ables, x and y are shared variables, and all variables are
initialized to ®. When the program finishes, TSO ensures
r® <= rl. On the other hand, PSO allows r1 < r® since
the write operation to x may be reordered with the write op-
eration to y under PSO. Thus, program verification cannot
ignore memory consistency models.

In recent years, several verification theories have been pro-
posed [13, 10, 8, 5, 6, 9, 12, 11] to verify programs under
various memory consistency models. However, most of them
are specific to fixed memory consistency models except for a
few works [13, 11]. This means that they are not suitable for
practical relaxed memory consistency models that may vary
from language to language, and CPU to CPU.

Our goal is to construct a unified verification theory for
various memory consistency models. In the verification the-
ory, a memory consistency model is formalized as an input
of verification as with a program. That is, we do not have
to modify the verification theory even when we handle a new
memory consistency model. This can be useful to design and
implement programming languages and CPU architectures.

In the paper, we describe our former, on-going, and future
works.

2 A General Model Checking Frame-
work
Model checking is a promising method for program verifica-

tion based on exhaustive searches of execution traces of pro-
grams. Given a program and a property that we check, it de-

tects unsafety of the program, which is ensured by existence
of counterexamples for the property.

Ebnenasir developed a model checker for UPC memory
model [8]. We also developed model checkers for CAF and
XMP memory models [5, 6]. However, these model checkers
are specific to their memory consistency models.

To make a model checker independent of fixed memory
consistency models, we designed a low-level language that
contains instructions for memory operations, and developed a
general model checking framework for various memory con-
sistency models [3]. In the framework, we can formalize a
memory consistency model as a set of formulas consisting of
relations between instructions, and we succeeded in giving
sets of formulas that represent Itanium, CAF, and UPC mem-
ory models, respectively. Differently from the unified model
checking approach of Yang et al. [13], we explicitly handle
low-level jump instructions for loops. This enables reorder-
ing of instructions and their effects across loop iterations.

We also implemented a model checker generator, called
MCcSPIN [1], following the framework. McSPIN takes a pro-
gram, a property, and a (formalized) memory consistency
model as inputs, and generates a model checker to verify
whether the program has the property under the memory con-
sistency model. To avoid the state explosion problem, Mc-
SPIN can perform some optimizations in exploring execution
traces [4]. One interesting optimization is to prune execution
traces by utilizing relations that occur in a given memory con-
sistency model formalized as a set of formulas consisting of
relations.

3 Concurrent Program Graph Logic

Theorem proving ensures safety of programs by existence of
proofs. Concurrent program logic is a logic for concurrent
programs. Ridge and Vafeiadis et al. gave concurrent pro-
gram logics [10, 12], however, they are specific to x86-TSO
and (restricted) C11 memory models, respectively.

We proposed new representations of programs under mem-
ory consistency models, called program graphs [2]. Program

store x <+ 1 —reflect x| |loadry <y

v

loadr; <« x

storey < 1 —reflecty

Figure 1: A program graph under TSO

store x <4 1 —reflect x loadry —y

v v

storey <+ 1 —reflecty load ry <1 x

Figure 2: A program graph under PSO

graphs are directed acyclic graphs consisting of instructions
and effects (as nodes) and dependences between instructions
(as edges). The edges are transitive. Operational semantics
of a program graph is defined as a state transition system
with graph rewriting that removes its root nodes. We define a
memory consistency model as a translation from programs to
program graphs. In this paper, we intuitively explain TSO and
PSO translations by examples. TSO prohibits a write opera-
tion to overtake an effect of another write operation that has
been issued before. This is represented by the edge between
reflect x and store y < 1 in the program graph of Fig. 1.
On the other hand, PSO allows a write operation to overtake
an effect of another write operation that has been issued be-
fore. This is represented by no edge between reflect x and
store y <4 1 in the program graph of Fig. 2. Thus, program
graphs naturally represent dependences between instruction-
s/effects specified by memory consistency models.

We gave a concurrent program logic for program graphs,
called concurrent program graph logic, which supports mem-
ory consistency models that can be defined as a translation
from programs to program graphs. To the best of our knowl-
edge, the concurrent program graph logic is the first relatively
complete logic for relaxed memory consistency models.

4 On-going and Future Works

Compared to general model checking framework in Sec. 2,
the expressiveness of the concurrent program logic in Sec. 3
is limited. To relax the limitation, we are extending the defini-
tion of program graphs to handle memory consistency mod-
els that explicitly refer to memory hierarchy and/or do not
assume global time.

In both of our approaches, programs are written in sim-
ple imperative low-level languages that do not support point-
ers, arrays, or functions. We are enhancing the general model
checking framework and the concurrent program logic to sup-
port them.

There are two directions for future work.

One problem is that the general model checking framework
of Sec. 2 and the concurrent program logic of Sec. 3 handle
only safety properties. One direction is to improve our ap-
proach to handle liveness properties. Especially, construction
of concurrent program logic for liveness under relaxed mem-
ory consistency models is challenging.

Another problem is that McSPIN [1] is a bounded model
checker by restricting the numbers of loop iterations. Another
direction is to relax the restriction.

References

[1] McSPIN. https://bitbucket.org/abet/mcspin/.

[2] T. Abe and T. Maeda. Concurrent program logic for
relaxed memory consistency models with dependences
across loop iterations. Submitted.

[3] T. Abe and T. Maeda. A general model checking frame-
work for various memory consistency models. In Proc.
of HIPS2014, pages 332-341, 2014.

[4] T. Abe and T. Maeda. Optimization of a general model
checking framework for various memory consistency
models. In Proc. of PGAS2014, 2014.

[5] T. Abe, T. Maeda, and M. Sato. Model Checking with
User-Definable Abstraction for Partitioned Global Ad-
dress Space Languages. In Proc. of PGAS2012, 2012.

[6] T. Abe, T. Maeda, and M. Sato. Model Checking Stencil
Computations Written in a Partitioned Global Address
Space Language. In Proc. of HIPS2013, pages 365-374,
2013.

[7]1 S. Adve and K. Gharachorloo. Shared memory con-
sistency models: a tutorial. Computer, 29(12):66-76,
1996.

[8] A. Ebnenasir. UPC-SPIN: A Framework for the Model
Checking of UPC Programs. In Proc. of PGAS2011.
ACM, 2011.

[9] M. Gligoric, P. C. Mehlitz, and D. Marinov. X10X:
Model Checking a New Programming Language with
an ”Old” Model Checker. In Proc. of ICST2012, pages
11-20, 2012.

[10] T. Ridge. A rely-guarantee proof system for x86-TSO.
In Proc. of VSTTE2010, pages 55-70, 2010.

[11] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating
weak memory with ghosts, protocols, and separation. In
Proc. of OOPSLA2014, pages 691-707. ACM, 2014.

[12] V. Vafeiadis and C. Narayan. Relaxed separation logic:
A program logic for C11 concurrency. In Proc. of OOP-
SLA2013, pages 867-884. ACM, 2013.

[13] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. UMM:
an operational memory model specification framework
with integrated model checking capability. Concurr.
Comput.: Pract. Exper., 17(5-6):465-487, 2005.

